home | index | units | counting | geometry | algebra | trigonometry | calculus | functions
analysis | sets & logic | number theory | recreational | misc | nomenclature & history | physics

Final Answers
© 2000-2020 Gérard P. Michon, Ph.D.

Nimbers Redux

 Michon
 

Related articles on this site:

Related Links (Outside this Site)

Mathematical Games.   |   Games in the Classroom.
Clever Games by Nancy Casey (Los Alamos MegaMath, with beta site in Idaho).
Combinatorial Game Theory (including Clobber) by David Wolfe (UC Berkeley).
Dots and Boxes (Google Web Directory).
Games and Puzzles Page at cut-the-knot.com.
Combinatorial Game Theory by David Eppstein (UC Irvine).
Octal Games by Achim Flammenkamp (Universität Bielefeld).
Games Mathematicians Play by Gregory McColm (University of South Florida).
Games of No Chance (Downloadable Articles) edited by Richard Nowakowski.
Combinatorial Games by Thane Plambeck.  |  AOL: Combinatorial Game Theory.
 
border
border

Nim Arithmetic

Notations:   Numbers are normally expressed in decimal.  Binary expansions are underlined  (e.g., 10 = 1010).  In what follows, the plus sign  (+)  is used for Nim addition or bitwise addition  (binary addition without carry).  Following a convention introduced by  John H. Conway (1937-2020) in the same context  (On Numbers and Games, 1976)  we put expressions using ordinary arithmetic between square brackets: 

4 + 6=2  100 + 110=10
[ 4 + 6 ]=10  [ 100 + 110 ]=1010

Nimbers   |   Nim


(2007-06-02)   Nim-sum of Fractions
Extending bitwise addition to ordinary rational numbers.

We may investigate what happens when bitwise (exclusive-or) addition is applied to the binary expansions of ordinary fractions.  (Those are ultimately periodic.)

Adding bitwise two periodic expansions of periods p and q yields an expansion whose period divides the lowest common multiple (LCM) of p and q. 

    [1/3]     =  0.010101010101010101010101...
    [1/5]     =  0.001100110011001100110011...
[1/3] + [1/5] =  0.011001100110011001100110...
    [2/5]     =  0.011001100110011001100110...

Therefore, [1/3] + [1/5] = [2/5].  Equivalently, [1/5] + [2/5] = [1/3]

The nonzero fractions whose denominator is a power of 2, have two binary expansions (one ending with infinitely many zeros, the other ending with infinitely many ones).  The issue is resolved by introducing the  binary antizero  0 :

    0    = ....111111111111111111.111111111111111111...

Note that if we add (in the ordinary sense) any nonzero number to 0, we obtain that same number, represented either by its unique binary expansion or by one of two equivalent ones,  (Indeed, adding 0 in the ordinary way lets you switch from one such representation to the other.)  With ordinary arithmetic, there's no difference (literally!) between 0 and 0 or between  ½  and  [ 0+½ ].  With Nim-arithmetic, on the other hand, 0 cannot be eliminated except with the use of a  unary  minus  (there's no need for a binary minus operator, since addition and subtraction are the same operation).  The relation to remember is:

x + [-x]   =   0   =   -0

So, the antizero  0  may also be called  "-0"  (minus zero).

     0     = ....111111111111111111.111111111111111111...
   [-1]    = ....111111111111111111.000000000000000000...
 [-1] + 0  = ....000000000000000000.111111111111111111...
[1/3] + 0  = ....111111111111111111.101010101010101010...
  [-1/3]   = ....111111111111111111.101010101010101010...

Nim-addition endows the binary expansions with the structure of a group  (each expansion is its own opposite).  We call such a binary expansion a  nimber.  One or two nimbers are associated with each number.

Nimbers form an Abelian group under Nim-addition.  The subgroups correspond to fractions with a binary period that divides a given n.  Those are fractions whose denominators are divisors of  2n-1.  They are of the form  [x+y/(2n-1)]  where y is an integer from  0  to  2n-1.  (both extremes being excluded if we rule out numbers whose denominators are powers of 2).  The structure is thus homomorphic to a simple cartesian product of two groups:  The integer nimbers on one hand (to which x belongs) and, on the other hand, the finite group of  2n  integer nimbers to which  y  belongs.

 Come back later, we're
 still working on this one...

' Nim-addition generalized to positive fractions in UBASIC:
'
fnSim(X,Y)
local D,N,Z,S
S=1:while or{even(den(X)),even(den(Y))}:X*=2:Y*=2:S*=2:wend
'Both denominators are now odd.  Divisor S is a power of 2.
D=lcm(den(X),den(Y))
if D>1 then Z=2:N=1:while Z<>1:inc N:Z=(Z+Z)@D:wend:D=2^N-1
N=floor(X):X=X-N
Z=floor(Y):Y=Y-Z
Z=bitxor(N,Z)+bitxor(num(X)*D\den(X),num(Y)*D\den(Y))//D
return(Z//S)
 Denominator  Binary Period  Mersenne Multiple 
111
323
5415
737
9663
11101023
13124095
15415
178255
1918262143
21663
23112047
25201048575
2718262143
2928268435455
31531
33101023
35124095
373668719476735
39124095
41201048575
431416383
45124095
47238388607
49212097151
518255
53524503599627370495
55201048575
5718262143
5958288230376151711743
61601152921504606846975
63663
65124095
676673786976294838206463
69224194303
713534359738367
739511
75201048575
77301073741823
7939549755813887
815418014398509481983
83824835703278458516698824703
858255
8728268435455
89112047
91124095
93101023
953668719476735
9748281474976710655
99301073741823
1011001267650600228229401496703205375
103512251799813685247
105124095
10710681129638414606681695789005144063
1093668719476735
1113668719476735
11328268435455
 

Recall that a long prime to some base of numeration is a prime p whose inverse 1/p has period p-1 in that base.  In binary, the long primes are:

3, 5, 11, 13, 19, 29, 37, 53, 59, 61, 67, 83, 101, 107, 131, 139, 149, 163, 173, 179, 181, 197, 211, 227, 269, 293, 317, 347, 349, 373, 379, 389, 419, 421, 443, 461, 467, 491, 509, 523, 541, 547, 557, 563, 587, 613, 619, 653, 659, 661, 677, 701, 709, 757, 773, 787, 797, 821, 827, 829, 853, 859, 877, 883, 907, 941, 947...   (A001122)

Likewise, here are the prime numbers  p  whose binary periods are  (p-1)/2 :

7, 17, 23, 41, 47, 71, 79, 97, 103, 137, 167, 191, 193, 199, 239, 263, 271, 311, 313, 359, 367, 383, 401, 409, 449, 463, 479, 487, 503, 521, 569, 599, 607, 647, 719, 743, 751, 761, 769, 809, 823, 839, 857, 863, 887, 929, 967, 977, 983, 991, 1009, 1031, 1033, 1039...   (A115591)

By  Fermat's little theorem,  the binary period of a prime  p  divides  p-1.  Composite numbers for which this is true are the  (rare)  pseudoprime  to base 2.  The smallest of these is  341 = 11×13,  whose binary period is 10:

Binary periods of Poulet numberss  (Carmichael numbers  are in  bold type)
A001567 34156164511051387172919052047246527012821
Period 1040282418362811563660

For example,  953 is prime.  So, its binary period divides  952 = 23. 7 . 17.  It's actually  68 = 22. 17  because the following characterization holds:

953  divides  268-1  but divides neither  268/2-1  nor  268/17-1.

The period of a product of integers divides the  LCM  of their periods.


(2007-06-05)   Nim-product of Fractions
Extending  nim-multiplication  to ordinary rational numbers.

All we have to do is define the product of two 2-powers.  Among integers, this is done by specifying that the product of a  Fermat 2-power  by any lesser integer is equal to their ordinary product.

Let's introduce  [½]  into the picture.  The product of  ½  by any integer can't be an integer  (or else multiplying the result by the inverse of that integer would yield an integer instead of  ½  as it should).  More generally,  [½]  cannot be the root of any quadratic polynomial with integer coefficients  (the integer nimbers are quadratically closed). 

[ 1/2 ] 3   =   2             [ 1/2 ] 2   =   [ 1/4 ]
[ 1/8 ] 3   =   [ 1/2 ]
[ 1/512 ] 3   =   [ 1/8 ]

On2 : transfinite number hacking  by  Lieven Le Bruyn  (2009-01-08).
On2 : Conway's nim-arithmetics  by  Lieven Le Bruyn  (2009-01-26).
On2 : Conway's nim-arithmetics  by  Lieven Le Bruyn  (2009-01-27).
 
Conway polynomials

border
border
visits since April 13, 2020
 (c) Copyright 2000-2020, Gerard P. Michon, Ph.D.